Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of PEDOT-PSS resistivity and work function on PLED performance

Identifieur interne : 000158 ( Main/Repository ); précédent : 000157; suivant : 000159

Effect of PEDOT-PSS resistivity and work function on PLED performance

Auteurs : RBID : Pascal:14-0045714

Descripteurs français

English descriptors

Abstract

The effect of a commonly used hole injection layer, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT-PSS), on polymer light-emitting diode (PLED) performance has been investigated. A series of four different types of commercial PEDOT-PSS, with varying resistivity and work function were examined in devices with the structure Indium Tin Oxide (ITO)/PEDOT-PSS/High Molecular Weight Poly(n-vinylcarbazole) (PVKH): 30% N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD)/Low molecular Weight Poly (n-vinylcarbazole) (PVKL): 40% 2-(4-Biphenyl)-5-(4-tert-butylphenyl)-1,2,4-oxadiazole (PBD): 8% Ir(ppy))3. It was found that the PEDOT-PSS with the highest work function and resistivity produced the devices with the highest efficiencies; this is due to the improved hole injection effect, the decrease in electron leakage current and the prevention of pixel crosstalk. A maximum device current efficiency of 33.4 cd A 1 has been achieved for the most resistive PEDOT; this corresponded to an external quantum efficiency (E.Q.E.) of 11%. Increasing the work function of the PEDOT used resulted in a 60% increase in E.Q.E. and device efficiency for PEDOTs in the same resistivity range. Drift-diffusion simulations, carried out using SEmiconducting Thin Film Optics Simulation software (SETFOS) 3.2, produced J-V curves in good agreement with the experimentally observed results; this allowed us to extract qualitative values for the effective device mobility along with the PEDOT work function and resistivity.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0045714

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of PEDOT-PSS resistivity and work function on PLED performance</title>
<author>
<name sortKey="Cook, Javan H" uniqKey="Cook J">Javan H. Cook</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Organic Electroactive Materials Research Group, Department of Physics, Durham University</s1>
<s2>Durham</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Al Attar, Hameed A" uniqKey="Al Attar H">Hameed A. Al-Attar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Organic Electroactive Materials Research Group, Department of Physics, Durham University</s1>
<s2>Durham</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Monkman, Andy P" uniqKey="Monkman A">Andy P. Monkman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Organic Electroactive Materials Research Group, Department of Physics, Durham University</s1>
<s2>Durham</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Durham</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0045714</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0045714 INIST</idno>
<idno type="RBID">Pascal:14-0045714</idno>
<idno type="wicri:Area/Main/Corpus">000179</idno>
<idno type="wicri:Area/Main/Repository">000158</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Benzenic compound</term>
<term>Biphenyl derivatives</term>
<term>Carbazole(vinyl) polymer</term>
<term>Charge carrier injection</term>
<term>Computer software</term>
<term>Crosstalk</term>
<term>Doped materials</term>
<term>Drift mobility</term>
<term>Electrical conductivity</term>
<term>Hole injection layer</term>
<term>Holes</term>
<term>ITO layers</term>
<term>IV characteristic</term>
<term>Indium oxide</term>
<term>Iridium complexes</term>
<term>Leakage currents</term>
<term>Light emitting diodes</term>
<term>Molecular weight</term>
<term>Oxadiazoles</term>
<term>Performance evaluation</term>
<term>Polymer blends</term>
<term>Polymers</term>
<term>Prevention</term>
<term>Quantum yield</term>
<term>Semiconductor thin films</term>
<term>Styrenesulfonate polymer</term>
<term>TDS</term>
<term>Thiophene derivative polymer</term>
<term>Tin additions</term>
<term>Work functions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conductivité électrique</term>
<term>Travail sortie</term>
<term>Diode électroluminescente</term>
<term>Evaluation performance</term>
<term>Addition étain</term>
<term>Couche ITO</term>
<term>Masse moléculaire</term>
<term>TDS</term>
<term>Oxadiazole</term>
<term>Trou</term>
<term>Injection porteur charge</term>
<term>Courant fuite</term>
<term>Prévention</term>
<term>Diaphonie</term>
<term>Rendement quantique</term>
<term>Mobilité dérive</term>
<term>Couche mince semiconductrice</term>
<term>Logiciel</term>
<term>Caractéristique courant tension</term>
<term>Styrènesulfonate polymère</term>
<term>Thiophène dérivé polymère</term>
<term>Mélange polymère</term>
<term>Polymère</term>
<term>Oxyde d'indium</term>
<term>Carbazole(vinyl) polymère</term>
<term>Composé benzénique</term>
<term>Dérivé du biphényle</term>
<term>Complexe d'iridium</term>
<term>Matériau dopé</term>
<term>7363</term>
<term>7330</term>
<term>8560J</term>
<term>8105L</term>
<term>ITO</term>
<term>6843V</term>
<term>Couche d'injection de trous</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Logiciel</term>
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of a commonly used hole injection layer, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT-PSS), on polymer light-emitting diode (PLED) performance has been investigated. A series of four different types of commercial PEDOT-PSS, with varying resistivity and work function were examined in devices with the structure Indium Tin Oxide (ITO)/PEDOT-PSS/High Molecular Weight Poly(n-vinylcarbazole) (PVKH): 30% N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD)/Low molecular Weight Poly (n-vinylcarbazole) (PVKL): 40% 2-(4-Biphenyl)-5-(4-tert-butylphenyl)-1,2,4-oxadiazole (PBD): 8% Ir(ppy))
<sub>3</sub>
. It was found that the PEDOT-PSS with the highest work function and resistivity produced the devices with the highest efficiencies; this is due to the improved hole injection effect, the decrease in electron leakage current and the prevention of pixel crosstalk. A maximum device current efficiency of 33.4 cd A
<sup>1</sup>
has been achieved for the most resistive PEDOT; this corresponded to an external quantum efficiency (E.Q.E.) of 11%. Increasing the work function of the PEDOT used resulted in a 60% increase in E.Q.E. and device efficiency for PEDOTs in the same resistivity range. Drift-diffusion simulations, carried out using SEmiconducting Thin Film Optics Simulation software (SETFOS) 3.2, produced J-V curves in good agreement with the experimentally observed results; this allowed us to extract qualitative values for the effective device mobility along with the PEDOT work function and resistivity.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of PEDOT-PSS resistivity and work function on PLED performance</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>COOK (Javan H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AL-ATTAR (Hameed A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MONKMAN (Andy P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Organic Electroactive Materials Research Group, Department of Physics, Durham University</s1>
<s2>Durham</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>245-250</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000501664880350</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0045714</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of a commonly used hole injection layer, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT-PSS), on polymer light-emitting diode (PLED) performance has been investigated. A series of four different types of commercial PEDOT-PSS, with varying resistivity and work function were examined in devices with the structure Indium Tin Oxide (ITO)/PEDOT-PSS/High Molecular Weight Poly(n-vinylcarbazole) (PVKH): 30% N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD)/Low molecular Weight Poly (n-vinylcarbazole) (PVKL): 40% 2-(4-Biphenyl)-5-(4-tert-butylphenyl)-1,2,4-oxadiazole (PBD): 8% Ir(ppy))
<sub>3</sub>
. It was found that the PEDOT-PSS with the highest work function and resistivity produced the devices with the highest efficiencies; this is due to the improved hole injection effect, the decrease in electron leakage current and the prevention of pixel crosstalk. A maximum device current efficiency of 33.4 cd A
<sup>1</sup>
has been achieved for the most resistive PEDOT; this corresponded to an external quantum efficiency (E.Q.E.) of 11%. Increasing the work function of the PEDOT used resulted in a 60% increase in E.Q.E. and device efficiency for PEDOTs in the same resistivity range. Drift-diffusion simulations, carried out using SEmiconducting Thin Film Optics Simulation software (SETFOS) 3.2, produced J-V curves in good agreement with the experimentally observed results; this allowed us to extract qualitative values for the effective device mobility along with the PEDOT work function and resistivity.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C30</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C63</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A05Z</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Travail sortie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Work functions</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Evaluation performance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Performance evaluation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Masse moléculaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Molecular weight</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>TDS</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>TDS</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Oxadiazole</s0>
<s2>NK</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Oxadiazoles</s0>
<s2>NK</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Trou</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Holes</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Injection porteur charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Charge carrier injection</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Inyección portador carga</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Courant fuite</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Leakage currents</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Prévention</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Prevention</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Prevención</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Diaphonie</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Crosstalk</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Rendement quantique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Quantum yield</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Mobilité dérive</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Drift mobility</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Movilidad deriva</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Couche mince semiconductrice</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Semiconductor thin films</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Logiciel</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Computer software</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>IV characteristic</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Polymère</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Polymers</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Carbazole(vinyl) polymère</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Carbazole(vinyl) polymer</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Carbazol(vinil) polímero</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Composé benzénique</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Benzenic compound</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Compuesto bencénico</s0>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Dérivé du biphényle</s0>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Biphenyl derivatives</s0>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Bifenilo derivado</s0>
<s5>29</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Complexe d'iridium</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Iridium complexes</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>7363</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7330</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>8560J</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>8105L</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>6843V</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>Couche d'injection de trous</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="36" i2="3" l="ENG">
<s0>Hole injection layer</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>20</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Optoelectronic devices</s0>
<s5>20</s5>
</fC07>
<fN21>
<s1>055</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000158 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000158 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0045714
   |texte=   Effect of PEDOT-PSS resistivity and work function on PLED performance
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024